
A comparison theorem for differential inequalities with applications in quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 417

(http://iopscience.iop.org/0305-4470/13/2/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 04:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math. Gen., 13 (1980) 417-424. Printed in Great Britain 

A comparison theorem for differential inequalities with 
applications in quantum mechanicst 

Thomas Hoffmann-Ostenhof 
Institut fur Theoretische Chemie und Strahlenchemie der Universitat Wien, Wahringer- 
strasse 17, A 1090 Vienna, Austria 

Received 9 April 1979 

Abstract. A theorem on differential inequalities is proved. By means of this theorem the 
following result is established. Let $(r l ,  r2,  r12) denote the ground-state wavefunction of a 
two-electron atom; then + ( r l ,  r2,  r 1 2 )  s $(rl,  rz ,  r i 2 )  for r i 2  3 rI2.  Furthermore, a different 
proof is given, for the hydrogenic molecular ion, of a recent result of Lieb and Simon on the 
monotonicity of the electronic part of the Born-Oppenheimer energy with respect to the 
internuclear distance. 

1. Introduction 

The usefulness of differential inequality techniques for obtaining rigorous results on 
bound-state wavefunctions has been noticed only recently (Simon 1975, Bardos and 
Merigot 1977, Morgan 1978, Hoffmann-Ostenhof et a1 1978, Deift et a1 1978, 
Hoffmann-Ostenhof 1979). 

In this paper we shall derive a ccmparison theorem for differential inequalities 
which to our knowledge is new. This theorem will be applied to the ground-state 
wavefunction of helium-like systems and will also be used to provide an alternative 
proof of a result of Lieb and Simon (1978) on the electronic ground-state energy of the 
hydrogenic molecular ion. 

To provide motivation, we first state a comparison theorem for differential inequal- 
ities which turned out to be very useful for the investigation of decay properties of 
atomic subcontinuum wavefunctions (Hoffmann-Ostenhof et a1 1978, Deift et a1 1978). 

Theorem 1.1. Let R be an open subset of R". Suppose that the functions f and g satisfy 
the following conditions: 

(i) f, g E Co(b)  (continuous in the closure of R); 
(ii) f, g + 0 as 1x1 +CO in fl and f, g 5 0 Vx E R ;  

(iii) f a  g Vx E a n ;  
(iv) O s  V(x) s W ( x )  in R ;  

(v) vf]in the distributional sense in R. 
A g s  W g  

Then f s g in all of R. 

t Dedicated to Professor Oskar E Polansky on the occasion of his 60th birthday. 
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The proof is based entirely on the maximum principle (see e.g. Deift et a1 1978) and 
can be extended to cases where the Laplacian in (v) is replaced by a more general elliptic 
operator (Protter and Weinberger 1967). 

The applicability of theorem 1.1 to many problems of interest is somewhat 
hampered by condition (iv), since (iv) implies that we can compare f with g only in those 
regions where g is subharmonic. 

In 8 2 we will overcome this restriction on V and W under some mild additional 
requirements on f and g. Section 3 will consist of the aforementioned applications. 

2. Comparison theorems 

Let R be an open, unbounded subset of R ", We shall consider functions 4 : R + R with 
the following properties: 

(a) 4 E CO@); 

(4 A 4  E N v  

(b) # J + O  as /x /+co  in R; 

The following theorem is our main result. 
(Jn lA4 I dx < 03). 

Theorem 2.1. Let f and g satisfy the conditions (a)-(c). Furthermore let f and g have 
the following properties: 

(i) f >  0 almost everywhere in R. 
(ii) f 3 g Vx E aR. 

(iii) V ( x )  < W(x) almost everywhere in R. 

(iv) Ag a Wg 
Then f 2 g in all of R. 

vf ]in the distributional sense in R. 

Proof. Let Dd = {x E R: g - f > d > O}.  Obviously Dd is, for every d > 0, a bounded 
subset of R. If we can show that Dd is empty for every d > 0 the theorem is proved. We 
shall give the proof in two steps. In step (1) we shall show that Dd is empty if 
f ,  g E C"(R) (the functions infinitely differentiable in R). In step ( 2 )  we complete the 
proof via regularisation. 

Step ( 1 ) .  We assume that for sufficiently small d, Dd is non-empty. (i), (ii) and (iv) imply 
that, for x E Dd, f A g  - gAf 2- (W - V ) f g  and from (iii) it follows that 

where the integral is monotonically non-increasing in d. Now let F = f + d / 2  and 
G = g - d / 2 ;  then 

( F A G  - G A F )  dx = I ( f A g  - g A f )  dx f d/2 (Af + Ag)  dx. (2.2) 
IDd D d  'Dd 

Condition (c) implies 
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Therefore the right-hand side of (2.2) will be positive for sufficiently small d. Appli- 
cation of Green's formula to the left-hand side of (2.2) leads for sufficiently small d to 

IaDdFnV(G-F)dx  > O ,  (2.4) 

since F = G for x E d D d .  n denotes the outward-directed unit normal vector. Since 
F > O  there is a non-empty subset r of d D d  such that nV(G -F) > 0 Vx E r. This 
implies that the inward-directed normal derivative is negative for x E r, and hence that 
there are points in Dd with G - F < 0 which in turn implies g -f < d. Therefore Dd is 
empty for every d > 0. 

Step ( 2 ) .  Let p(x) be a non-negative function belonging to C?(R")  (the infinitely 
differentiable functions with compact support), with the properties p(x) = 0 if x 5 1 and 
l pix) dx = 1. Let 6 > 0 and let # satisfy the conditions (a)-(c) and 

(2.5) 

Now let D: = { x  E Dd,.l: gs -fa > d }  First we note two properties of # which we will 
need: 

(A) + # uniformly as S + 0 in DdI2; 
(B) JDd,, IA(d6 - # ) I  dx + as 

For a proof of these two properties see for instance Gilbarg and Trudinger (1977). 
We assume again that for sufficiently small d, Dd is non-empty. (A) implies that D: 

is also non-empty for sufficiently small 6 and we shall establish a contradiction as in step 
(1). 

Let Fs =fa + d/2, Gs = g, - d / 2 .  As in step (1) we have 

ID, (FAG - GAF) dx > 0 (2.6) 

for sufficiently small S. Now 

(FsAGs - G,AFs) dx -ID, (FAG - GAF) dxl i ID$ 

IFsAGs - FAG/dx + /GsAFs - GAF/ dx. (2.7) 

For S sufficiently small, (A, B) implies 02 c Dd/2 and, for S + 0, 

sup Ifs-FI jAgldx+ SUP lFsl[ b (g -gd ldx+O.  (2.8) 
X E D d / 2  ID, / ,  * E D d / 2  D d / 2  

This implies that the right-hand side of (2.7) vanishes as S + 0, which together with (2.6) 
leads for sufficiently small S to 

(Fs AGs - GBAFa) dx > 0. (2.9) 
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By application of Green's formula we obtain, in agreement with the reasoning in step 
(l), the desired contradiction. 

Remark 2.1 
Theorem 2.1 obviously holds also if R is a bounded set. In this case it can also be proved 
by applying Hopf's maximum principle to g l f  in the spirit of the methods given in the 
book of Protter and Weinberger (1967). 

The Laplacian in condition (iv) can be replaced by a more general elliptic operator in 
divergence form. We state here this extension of theorem 2.1 and only indicate its 
proof. Let A(x)  be a matrix function defined on R c  R " :  

1 ' a l l ( x )  a12(x) * * * aln(x) 

1 anl(x) a n 2 ( ~ )  * .  . a n n ( x )  

A(x)  = 

with x = ( x l ,  x 2 ,  . . . , x , )  E R" and a , ( x )  continuously differentiable, Vx E b. We also 
assume that, as a matrix, A is symmetric and positive definite, i.e. its lowest 
eigenvalue is strictly positive VXER. In the following the operator V =  
( a l a x , ,  a lax2 ,  . . . , d / d x , )  is to be understood as a vector operator acting, depending on 
the situation, as row or as column vector. 

Theorem 2.2. Suppose f and g satisfy the conditions (a) and (b) and that (c) is replaced 

(cl) V ( A V 4 )  E L1(n) .  

Furthermore f and g should satisfy (i)-(iii) of theorem 2.1 and (iv) be replaced by 

by 

(iv') vf ] in the distributional sense in R. 
V ( A V g )  3 Wg (2.10) 

Then fa g in all of CL 

Sketch of the proof. We only reconsider step (1). We have, for f and g belonging to 
C"(R), 

f V ( A V g )  = V f A V g )  - ( V f ) A ( V g ) .  (2.11) 

The last term on the right-hand side of equation (2.11) should be understood in the 
sense that (Vf) denotes a row vector and ( V g )  a column vector. For simplicity we 
assume that dR is sufficiently smooth and consider only Do = { x  E R: g -f > O}. From 
(2.10) and (2.11) we have in Do 

f V ( A V g )  - g V A V f )  3 (W - V ) f g  (2.12) 

and 

V ( f A V g )  -V(gAVf)  3 0. 

Hence Green's formula leads to 

(2.13) 

(2.14) 
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where we used the fact that A is a symmetric matrix. The positive definiteness of A 
implies nAn > 0. This in turn implies that An is an outward-directed vector for x E  DO 
and hence we have V(g - f ) A n  > 0 on a non-empty subset of a&. This leads, in 
complete analogy to the previous case, to a contradiction implying that Do is empty. 

Step (2) leads to no new complications and will be omitted here. 

Remark 2.2. We shall not apply theorem 2.2 in the next section. However, it should be 
noted that it seems to be very useful for the investigation of asymptotic properties of 
bound-state eigenfunctions of general many-particle Hamiltonians with centre of 
gravity removed, since for such Hamiltonians the usual Laplacian is replaced by an 
operator VAV with A a constant matrix. 

We shall now apply theorem 2.1 to eigenvalue problems. (Analogous results can be 
also derived from theorem 2.2.) 

Theorem 2.3. Suppose $(xl,  x 2 , .  . . , x,) is a bound-state solution of the Schrodinger 
equation (the corresponding Hamiltonian is defined on L 2 ( R  ")) 

-A$ + ( U ( X ~ ,  ~ 2 ,  . . . , x,) - E ) $  = 0, (2.15) 

E being the ground-state energy. The potential U is assumed to be sufficiently smooth 
such that II, satisfies the conditions (a)-(c) and $ > O  almost everywhere. If 
U ( x l ,  x 2 , .  . . , x, )<  U( -x l ,  x 2 , .  . . , x,) for all x1 > O ,  then +(xl,  X Z ,  . . . , x , ) a  
*(-x1, x2 , .  . . , x,) V X l  >o.  
Remark 2.3.. For most potentials of physical interest (see Reed and Simon 1978) the 
mathematical ground state (i.e. no symmetry restrictions) is almost everywhere posi- 
tive. 

Proof. This is a straightforward application of theorem 2.1. Let R = {x E R : x 1  > 0). In 
R we define the following functions: f = $ ( x l , .  . . , x , ) ,  g = + ( - x l , .  . . ,x , ) ,  V =  
U ( x l , .  . . , x , ) - E  and W =  U ( - x l , .  . . , x , ) - E .  For x l > O  we have Af = Vf and 
Ag = Wg. Since f = g for x E 8 0  we can apply theorem 2.1 to conclude that f 2 g for 
x1> 0. 

Remark 2.4. A closely related theorem has been proved by Lieb and Simon (1978) by 
completely different methods. 

3. Applications 

We shall first apply theorem 2.3 to the helium ground-state wavefunction. We consider 
a fixed nucleus with nuclear charge 2 and two electrons. The Hamiltonian is given by 

H = -1 &/ax: + a/ax;+a/ax: +a/ay:. +a/ay: +a/ay:) - z ( x :  +x; + X : ) p 2  

2 -1/2 2 -1/2 (3.1) -.ay: + Y; + Y3) +[(x1- Y d 2 +  (x2 - Y2I2 + (x3 - Y3) 1 , 

where x = (xl ,  x2, x 3 )  and y = (yl ,  yz, y3) denote the positions of the electrons in R 3 .  We 
adopt the usual abbreviations rl = 1x1, r 2  = Iy/, r12 = Ix -y l .  It is well known that the 
ground state $ depends only on r l ,  r2 and r12  and is symmetric with respect to 
permutation of the electron coordinates, i.e. $ ( x ,  y) = $(y, x )  (Hylleraas 1964). 
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Theorem 3.1. Let $(rl, r2,  112) be the ground state of a two-electron atom described by 
the Hamiltonian (3.1); then 

$(rl, r2, r 1 2 )  5 $ ( r l ,  rz,  r ; ~ )  (3.2) 
for riZ c r I 2 .  

Proof. First we note that $ is continuous (Kato 1957) and almost everywhere positive 
(Reed and Simon 1978). Furthermore since for suitable a > 0, C > 0, 

$(x, y )  s C exp(-arl - arz) (3.3) 
(see e.g. Deift et a1 (1978)), we obtain 

I lA$l dx dy = 2 l(-Z/rl -Z/r2+ l/rlz--E)41 dx dy 

(3.4) 

I 
s 2 C I  ( Z / r l + Z / r z + l / r l z + ~ E ~ )  exp(-arl-arZ)dx d y < m  

as can be seen from some obvious estimates. Hence $ satisfies the conditions (a)-(c) of 
§ 2. 

n1= {(x, y ) :  x1> 0, y1< 01, 

The potential U, 

Now let 

Rz = {(x, y):xl  < 0, y1 > 0) and s1 = R I  U iIz. 

U = --Z/rl -Z/rZ+ l/r lz,  

Ubi, xz, x3, y1, yz, Y3) < U(-x1, xz, x3, Yl, yz, Y3), 

Ubi, xz, x3, Yl, yz, Y 3 ) <  Ubi, xz, x3, -Y1, Yz, Y3). 

(3.5) 

satisfies the following inequalities in R: 

(3.6) 

We now rename our functions: 

~ ~ x 1 , x 2 , ~ 3 , Y 1 , Y 2 , Y 3 ~ =  U - E f o r ( x , Y ) E a  

Hence we obtain for (x, y )  E R, Af = 2 Vf and Ag = 2 Wg. Therefore theorem 2.1 implies 
f s  g or, for (x, y )  E R, 

$(x, Y )  a $(-x1, xz, x3, Y1, y2, Y3) 
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and 

$(x, Y )  5 $(Xl, x 2 ,  x 3 ,  -Y1 ,  y 2 ,  Y 3 ) .  

The symmetry properties of $ now imply (3.2). 

Remark 3.1. Theorem 2.3 and the result given in theorem 3.1 can be easily interpreted 
on physical grounds. One expects that the wavefunction should be in some sense small 
if the potential is large and vice versa. This vague feeling is made precise by those 
theorems though the situations which can be handled are admittedly very special. 

Remark 3.2. (3.2) can be written also in a different form, which is perhaps more 
transparent, by introducing the angle 8 between the two vectors x and y. The result 
reads then $ ( r l ,  r2, e )  5 $ ( r l ,  r2,  8’) for 8 5 e’, 0 s 8 s T. This clearly describes the 
angular correlation of $. 

Remark 3.3. A similar result can be also obtained for the ground state of the hydrogen 
molecule described by a Hamiltonian with fixed nuclei. Let $ ( r l ,  r2, r ; ,  r; ,  e )  denote 
the electronic ground state of this molecule, where rl  and r2 denote the distances of the 
first electron from the two fixed nuclei and r’l, r; denote the distances of the second 
electron. 8 denotes the angle between the two triangles built up by the two nuclei and 
the first and the second electron respectively. In complete analogy to the treatment of 
the helium problem we obtain $ ( r l ,  r2,  r ; ,  r;, 8) 2 $ ( r l ,  r2, r’l, r; ,  e’) for 8 5 8’ and 

Finally we consider the electronic ground-state energy e ( R )  of the hydrogenic 
molecular ion. This system is described by the following Hamiltonian, where R denotes 
the distance of the two nuclei with charge 2 :  

o s e s T .  

H = - ;(d2/dx + d2/dy  + d2/& 2 ,  - Z ( x 2  + y + z 2)-1’2 - Z ( (X - + y + z 2)-1’2. 

(3.9) 

We consider the corresponding Schrodinger equation H$ = e (R)$ ,  with H and $ 
depending parametrically upon R. Lieb and Simon (1978) proved the following result: 

Theorem 3.2. e ( R )  is monotonically non-decreasing. 

Sketch of the proof. This is a straightforward consequence of theorem 2.3 and will be 
only indicated, since one of the two proofs of Lieb and Simon (1978) is based on a 
theorem closely related to theorem 2.3. 

The Hellmann-Feynman theorem implies that 

de/dR =Z $(x, y ,  z ) ~ ( R  -x)((x -R)2+y2+z2)-3’2  dx dy dz. (3.10) J 
This expression can be transformed via a variable transformation into 

de/dR = dy dz d x ( x - R ) ( ( ~ - R ) ~ + y ~ f z ~ ) - ~ ’ ~ ( $ ( 2 R  -x, y ,  Z ) ’ - $ ( X ,  y ,  2)’). 

(3.11) 

Theorem 2.3 obviously also holds if the origin is shifted, that is to say, in our example, if 
for x > R, U(x,  y ,  z )  > U(2R - x ,  y ,  t )  then $(x, y ,  z )  S $(2R - x ,  y ,  z )  for x > R. A 
closer inspection of the potential in (3.9) shows that this is indeed the case. This in turn 
implies the positivity of the integral in (3.11) and hence the monotonicity of e @ ) .  

I I li: 
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Remark 3.4. To prove theorem 3.2, local properties of the wavefunction were used to 
obtain results on the energy. However, in order to extend this result to one-electron 
systems with n nuclei (n > 2) other methods appear to be necessary, as has been 
demonstrated by Lieb and Simon (1978). 
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